International Journal of Transportation Science and Technology xxx (XXXX) XXX

TRrA

Contents lists available at ScienceDirect e
SCIENCE &
TECHNOLOGY

International Journal of Transportation =
Science and Technology =

journal homepage: www.elsevier.com/locate/ijtst

Rule-based safety prediction models for rural two-lane
run-off-road crashes

Subasish Das ®*, Xiaoduan Sun”, Ming Sun”

2Texas A&M Transportation Institute, Bryan, TX 77807, USA
b University of Louisiana at Lafayette, Lafayette, LA 70504, USA

ARTICLE INFO ABSTRACT
Aftidﬁ history: ) During 2015-2017, the yearly average of fatalities caused by roadway departure (RwD)
Received 25 April 2020 crashes was 19,233 in the U.S. Roadway departure crashes, or crashes in which a vehicle

Received in revised form 23 June 2020
Accepted 18 August 2020
Available online xxxx

crosses an edge line, centerline, or otherwise leaves the traveled way, account for 52 per-
cent of all traffic fatalities in the U.S. during this time. A majority of RwD crashes are run-
off-road (ROR) crashes; these are crashes that result in a vehicle crossing the edge line on
either side of the roadway. In this study, the research team analyzed seven years (2010-
2016) of rural two-lane ROR crash data from Louisiana to better comprehend ROR crashes
Roadway departure inhreﬁning safety predictions for rural Fwo-lane highways. Statistical model (negative bino-
Safety performance function mial model) and three separate machine learning models (random forest, support vector
Rules based model machine, and Cubist) were applied to determine the best fit models. Overall, Cubist is char-
Cubist acterized by a better performance in estimating ROR crashes on rural two-lane roadways.
The Cubist approach introduced rules-based safety performance functions (SPFs) for total
and fatal and injury crashes. This approach will be beneficial for the safety practitioners
in tackling localized issues in crash data with an emphasis on prediction accuracy.
© 2020 Tongji University and Tongji University Press. Publishing Services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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1. Introduction

Robust safety prediction models facilitate the effective incorporation of roadway safety into transportation planning,
design, and operation that can quantitatively predict roadway safety. Many safety prediction models were developed in pre-
vious studies. Many of these models were introduced in the first edition of the Highway Safety Manual by the American
Association of State Highway Transportation Officials (AASHTO, 2010). The state of Louisiana established several goals to
decrease the number of crashes and ultimately save lives as part of their 2017 Strategic Highway Safety Plan (SHSP)
(LHSC, 2017). One of the emphasis areas presented in the SHSP is ‘Infrastructure and Operations.’ This focus area includes
roadway departure (RwD) or run-of-road (ROR) crashes, intersection safety issues, and non-motorized user safety issues.
This implementation plan identifies prospective safety countermeasures that can help Louisiana reduce ROR crashes on their
journey to Destination Zero Deaths. During 2015-2017, there were yearly 19,233 fatalities resulted from RwD, which is 52
percent of all the traffic fatalities in the United States (HSRG, 2019). ROR crash is defined as a crash that occurs after a vehicle
crosses an edge line on either side of the roadways. ROR crashes are a subset of RwD crashes when the vehicle crosses the
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centerline and edge line of the opposite direction. To effectively reduce the amount of RwD and ROR crashes and fatalities,
the Federal Highway Administration (FHWA) used the Strategic Approach & Plan as a guide to implementing countermea-
sures that: 1) keep vehicles in designated lane, 2) provide safe recovery from departures, and 3) reduce crash severity.

In recent years, models for crash count and severity distribution for different types of roadways have become more
advanced. In particular, new statistical models and machine learning algorithms have been utilized, such as data mining,
multivariate statistical model, and inclusion of random parameters to empirical Bayesian and full-Bayesian hierarchical
approaches. Regression models generally examine the mean effects of the factors and, consequently, disregard any subgroup
or cluster effect. Any resulting interventions then often follow suit in failing to consider any subgroup effect. Non-parametric
or machine learning regression techniques have recently appeared as a convenient alternative that maintains the efficiency
of standard statistical models while considering the complex nature of traffic crash occurrence scenarios. Additionally, con-
ventional safety analysis methods do not consider localized or sb-group effect in the dataset. In many cases, this issue is
addressed either by using local calibration factor or subdivide the dataset with broad groups using either length or traffic
volume thresholds. Rules-based machine learning models can address these issues.

It is important to note that machine learning models can determine complex and non-linear associations between a
response variable and a wide range of exploratory variables without any prior knowledge of underlying processes with high
prediction accuracy (McCabe et al., 2017). However, these models are not useful for practitioners due to a lack of inter-
pretability. This paper shows the value of using rule-based modeling to identify subgroup effects without requiring assump-
tions on the subgroups using seven years (2010-2016) of ROR crash data on rural two-lane roadways in Louisiana. Rather
than an uninterpretable machine learning model, rule-based multi-variate linear regression models provide better predic-
tions with model explanations.

2. Literature review

A top priority of roadway safety engineers and planners is to improve roadway safety. One of the most prominent
research areas within the diverse traffic safety research field is crash data analysis to assess the safety of a transportation
facility (e.g., interstates, arterials, intersections). Crash prediction models can capture complex interactions in traffic safety
data. They can also be used to make engineering judgments and analytical assumptions about a given crash occurrence. In
2010, Lord and Mannering (2010) conducted a comprehensive review of crash frequency studies and analyzed their limita-
tions. Savolainen et al. (2011) conducted a similar systematic review of injury severity related studies in 2011. In 2014,
Mannering and Bhat (2014) summarized analytic methods used in both crash frequency studies and injury severity studies
and included suggestions for future research. Their findings suggested that the key approach of most studies was to inves-
tigate the relationship between many different variables and crash occurrence or severity.

The Highway Safety Manual (HSM) was published based on many years of highway safety research. It outlines tools and
guidelines that can be used to perform quantitative safety analyses. The HSM also describes predictive methods that can be
used to identify sites that have the potential for safety improvement. Part C of the recently published HSM contains crash
prediction models for different types of facilities. The HSM recommends that users generate SPFs for their particular regions
to improve the crash prediction process.

The HSM provides default SPFs for different roadway facilities. Many studies have developed SPFs for rural two-lane road-
ways (Wang et al., 2019; Wali et al., 2018; Li et al., 2017; Martz et al., 2017; Russo et al., 2016; Anarkooli et al., 2018; Cafiso
et al.,, 2010; Hong et al., 2016; Garach et al., 2016). To use HSM models, there is a need for using local calibration factors.
Some states may predict fewer crashes, while others may predict more than the default SPFs. These calibration factors
account for the variations in traffic patterns, climate, topology, and other relevant factors. Numerous studies have developed
state-specific calibration factors (Llopis-Castell6 et al., 2019; Sun et al., 2018; Tarko et al., 2018; Mehta and Lou, 2013; Qin
et al., 2014; Abdel-Rahim and Sipple, 2015). The EB method uses weighted average principle. It has been widely used in
many safety studies and is recommended by the HSM (AASHTO, 2010; Pratt et al., 2018; Sun and Das, 2013a, 2013b; Sun
et al., 2014, Das et al., 2018, 2013; Das, 2015; Zou et al., 2019; Das et al., 2020; Wu et al., 2018).

The literature review reveals that majority of the SPF studies ignored the consideration of local effects of the localized
data. For example, rural two-lane roadway SPFs are mostly developed based on local data or calibration factors with some
common sub-categories based on either length or AADT thresholds. Rules based modeling can mitigate this issue by intro-
ducing local clusters based on the properties of the used variables by keeping an emphasis on the prediction accuracy. It calls
for demonstrating of using rule-based modeling to identify cluster or subgroup effect in crash data analysis. The current
research effort contributes to the safety research by developing rules-based regression models to predict ROR crashes on
rural two-lane roadways more accurately.

3. Research methodology
To compare the effectiveness of different estimation techniques for ROR crashes on rural two-lane highways, the project

team analyzed the following three machine learning regression techniques: the cubist method, random forest algorithms,
and support vector regression.
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3.1. Cubist

The concepts of the Cubist framework were developed by (Quinlan, 1992, 1993, 1994). The Cubist framework places a
multivariate linear model at each leaf, and then categorical decision trees are expanded to handle continuous classes with
the M5 model. Because the measures are developed at each tree, outcomes from the Cubist framework are more precise than
outcomes from a regression tree, which only contains a single value at each leaf. Another option for enhancing predictive
power is to use similar training cases to estimate the value at a given set of points or measures. A presumption of Cubist
is that it is a composite model that incorporates a model tree, reformulated as rules, with the instance-based method. Fur-
thermore, composite models, integrating instances, and model trees are more accurate than model trees alone.

3.2. Random forest

The random forest algorithm (RF) is based on the random subspace method (Ho, 1998) and the bagging principle
(Breiman, 2001). It, therefore, also depends on developing a collection of decision trees with random predictors. The critical
byproducts of RF include the out of bag (OOB), variable importance measures, and error rate. The OOB value is also known as
the misclassification rate, and as the number of trees increases, the value becomes smaller. The variable importance ranking
is found by using classification accuracy and the Gini impurity. When a given variable is randomly changed, the importance
ranking measures how much the mean squared error increases. If the prediction error shows no change when the variable is
altered, then the importance measures will not change significantly. Similarly, the mean squared error (MSE) of the variable
will only change slightly, indicating that the specified variable is not significant. If the MSE decreases significantly when the
variable changes, then the variable is considered critical.

3.3. Support vector regression (SVR)

In 1963, Lerner and Vapnik introduced the Generalized Portrait algorithm. This method included a core algorithm used to
develop Support Vector Machine (SVM), which are statistical learning theory algorithms. In 1974, Vapnik established the
field of statistical learning theory (History of SVM, 2020). Reports state that Vapnik et al. presented the current form of
the SVM on the basis of a separable bipartition problem at AT&T Bell Laboratories in 1992 (Smola and Scholkopf, 2004).
The objective of SVM is to map the data x into a high-dimensional feature space F through a nonlinear mapping.

One of the data-driven trend recognition algorithms for function approximation and regression is Support Vector Regres-
sion (SVR). The SVR approach presumes the error approximation to the data with model generalization. Although there are
various versions of the SVR, the traditional model, e-SVR, is detailed in the study conducted by Smola and Schélkopf (2004).
To obtain more information about SVR, readers should consult the Cornejo-Bueno et al. (2016) paper discussed in this study.

The e-SVR method for aggression comprised of, given a set of training vectors T = {(x,-, Kg), i=1,.--,1 } where x; stands
for a vector of predictive variables and K; is a measure of crash frequency count (specifies the facility type of rural roadways),
training a model in Eq. (1):

Ks(x) =f(x) +b=w'¢(x) +b (1)

where IAQ(X) is a prediction of K; to reduce the risk function in Eq. (2):
l .
Riskfunction(R) = % wi? + S L(Kfx) 2)
i1

where the norm of w directs the model smoothness, ¢(x) is a function of protection of the input space to the feature Hilbert
space, b is a parameter of bias, and L(Ki,f(xi)) is the loss function. The steps can be used to develop an SVR model for a train-

ing dataset.

4. Data

The research team collected seven years (2010-2016) of crash data from the Louisiana Department of Transportation and
Development (LADOTD). This data contains several databases separated by year, crash data, vehicle data, and geometric data.
The ROR crash characteristics are defined in the ‘harmful event’ variables in the vehicle data. Fig. 1 illustrates the flowchart of
data integration and analysis. Extracted ROR vehicle level data was later merged with crash and crash level geometric
(known as DOTD table) data. LADOTD also maintains a roadway inventory database. The ROR crashes were then assigned
to the roadway segments by using the control section, and logmile information (logmile from and logmile to). The total seg-
ment length of the rural two-lane roadways in Louisiana is 11,702 miles. These roadways experience 32,583 total, and
16,661 fatal and injury (known as KABC) ROR crashes in seven years. The average yearly ROR total and KABC crashes are
4655 and 2380, respectively.
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Fig. 1. Flowchart of data integration and analysis.

Table 1

ROR Crashes by Year and Severity Type.
Severity 2010 2011 2012 2013 2014 2015 2016 Total
Fatal (K) 148 127 148 116 142 128 120 929
Severe Injury (A) 59 50 63 40 54 47 44 357
Moderate Injury (B) 634 676 636 596 618 647 664 4471
Minor Injury (C) 1586 1637 1546 1494 1429 1608 1604 10,904
No Injury (O) 2178 2135 2182 2328 2278 2389 2432 15,922
Total 4605 4625 4575 4574 4521 4819 4864 32,583

Table 1 shows the number of ROR crashes for each year from 2010 to 2016. The total crashes for each year are distributed
in the table based on their severity, and each level of severity is totaled for all seven years. No Injury (O) shows the highest
frequency for all seven years with Minor Injury (C) following with the second-highest frequency. The severity with the low-
est occurrence is Severe Injury (A) with a total of 357. It is interesting that severe ROR crashes are lower in frequency than
fatal ROR crashes. From 2010-2016, similar pattern trends in each level of severity are shown. In 2016, the highest number of
ROR crashes was recorded, with a total of 4864 crashes (5.6% increase from 2010).

Fig. 2 shows the distribution of ROR crashes on roads throughout Louisiana. The red color represents the areas with more
ROR crashes, and the yellow colors identify the areas with less ROR crashes. The figure shows that ROR crashes are more
heavily concentrated on roads in the southern part of the state compared to the northern part. This is likely because there
is a larger rural roadway network in that region.

Table 2 describes the key variables for ROR crashes and shows the statistics of each variable. The traffic volumes are
widely varied on these networks, with a mean value of 2254 and a standard deviation of 2398 vehicles per day (VPD).

5. Results

The final dataset contains segment level crash information from 4882 crashes. Model performance was analyzed and val-
idated using a five-fold cross-validation procedure. For this purpose, the full dataset was separated into subsamples (n =5)
with an equal representation of data. Based on the four remaining subsamples, each sequential subsample was used to val-
idate the trained model independently; a sample of 2000 segments was randomly selected to compare the model perfor-
mance. The study aimed to lower the computation time for three different algorithmic techniques by using the sampling
method. The cubist framework was initially constructed without considering composite or committee models. The standard
statistical performance measures used to evaluate model performance include the coefficient of determination (R?), Root
Mean Square Error (RMSE), and mean absolute error (MAE). For example, RMSE is a measure of the dispersion of the resid-
uals or the standard deviation of the residuals. RSME predicts the parameter values, the standard deviation of the error term
with certain n degrees of freedom. The value of RMSE is expressed in Eq. (3):
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Fig. 2. Rural two-lane ROR crashes in Louisiana.

Table 2

Descriptive statistics of key variables.
Variable Description Mean Std. Dev. Min Max IQR!
Length Segment Length (mi.) 2.40 2.47 0.01 17.40 3.27
Shou_W_R Shoulder Width Right (ft.) 4.94 2.86 0.00 20.00 3.00
Shou_W_L Shoulder Width Left (ft.) 4.96 3.10 0.00 89.00 3.00
Pave_Wid Pavement Width (ft.) 22.09 237 9.00 64.00 4.00
AADT Annual Average Daily Traffic (vehicle per day or vpd) 2254 2398 20 22660 2344
Tot Total Crashes (2010-2016) 6.67 11.81 0 186 8
KABC Fatal and Injury Crashes (2010-2016) 341 6.02 0 96 4

Note: 'IQR = Interquartile Range.
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RMSE =

Two R packages (cubist and caret) were used in developing the models (Kuhn and Quinlan, 2018; Kuhn, 2018). The study
also used negative-binomial (NB) statistical model to compare the model performance with the machine learning models.
The performance of different models is illustrated by the RMSE and R? values listed in Table 3. Smaller RMSEs result in smal-
ler standard errors and best-fitted models. The values show that the Cubist model yields the highest accuracy than the other
two machine learning models. It can be argued that the performance of other two machine learning models are also similar
to the Cubist model. It is important to note that RF and SVM are conventional black-box machine learning models with lim-
ited interpretation powers. Cubist can generate easily interpretable linear regression models based on the rules-fit. Thus,
Cubist is selected as the suitable method for this analysis. The rest of the analysis was conducted using Cubist method.

Based on the performance statistics of all models, the Cubist model was later chosen to develop the rules-based SPFs. The
Cubist model features a boosting-like scheme, known as a committee, where iterative model trees are generated in sequence.
To manage the number of model trees, this study used the committee option. To change the predictions from the rule-based
model, the cubist uses the nearest-neighbor feature. First, a model tree (with or without committees) is constructed. Then,
Cubist can identify its nearest neighbors and establish the average of these training set points after a sample is anticipated by
the model. Readers can consult Quinlan (1993) for the details of the adjustment determination procedure.

Cubist models can be effectively used and applied with very few specifications of model parameters (tunable). In many
cases, only a number of rules will require enhancement for the given data, which makes this method extremely appealing to
learn complex conjunctions between the outcome variable or response and explanatory variables. Although 80% of the seg-
ment information was designated as the training data, the remaining information was used to test the modeling perfor-
mance. The maximum number of committees was determined to be 20. Three different instances (instance number 3, 5,
7) were selected for the final model development. Based on the initial explorations, committees with more than 20 did
not start to significant advancements in model predictability. To lower computation time, the instances were narrowed to
7. Fig. 3 displays the RMSE values produced from various tuning or committee-instance scenarios. The best prediction
was coordinated at 10 committees- 7 instances combination for training data. The combination was 15 committees-7
instances for the test data.

Table 4 lists the model performance measures for both training and test datasets. However, the performance on the train-
ing data set shows a slightly lower RMSE score. The measures indicate that the model performs well in both training and test
data sets.

At each split of the tree, Cubist saves a linear model (after performing the feature selection) that is permitted to have
terms for each variable used in the current split or any previous split. The final prediction is a function comprised of all
the linear models from the initial node to the terminal node. The percentages shown as the attribute usage in Table 5 reflects
all the models involved in prediction. Pavement width and shoulder width (left) are identified as the least significant pre-
dictor variables, consistent with the training and test data for both total and KABC crashes (see Table 5). Compared to the
test data, the two most significant predictors (segment length and AADT) of the training data show higher prediction per-
centages. The other data evaluation parameters (average error, relative error, and correlation coefficient) in both training
and test data models are not much deviated.

Rather than relying on an uninterpretable machine learning model, the reliance on rule-based models makes Cubist more
equipped to manage model explanation. SPFs are equations used to estimate the average number of annual crashes at a loca-
tion as a function of contributing factors. The estimated or predicted number of crashes (N) (for a project or a site) can be
predicted by multiplying three main parts: base SPF (Cpregicrea), CMFs, and a calibration factor, C, as shown in Eq. (4).

N = Chpredictea x C x HCMF (4)
Table 3
Model Performances Based on Sample Data (Total Crashes).
Models Min 1st Q. Median Mean 3rd Q. Max
RMSE
NB 8.2349 8.9701 9.3457 9.9812 12.4535 16.7001
RF 6.1182 6.9958 7.5437 7.7028 8.0980 12.1033
SVR 6.3115 7.1807 7.5596 7.7765 8.1638 11.8817
Cubist 6.1650 6.9975 7.4935 7.6974 8.0623 12.3698
RZ
NB 0.2702 03124 0.3345 0.3370 0.3550 0.3890
RF 0.4013 0.4772 0.5192 0.5193 0.5581 0.6145
SVR 0.4074 0.4735 0.5123 0.5085 0.5429 0.6028
Cubist 04171 0.4769 0.5252 0.5165 0.5524 0.6290
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Table 4
Performances of the Models on Train and Test Data.
Crash Type Dataset No. of Segments Committees RMSE R? MAE
Total Crashes Train 3905 20 8.3157 0.4806 4.2297
Test 977 20 8.4126 0.4788 4.3234
KABC Crashes Train 3905 20 4.1832 0.5162 2.2417
Test 977 20 4.2615 0.5007 2.2446
Table 5
Attribute Use and Data Evaluation Parameters.
Total Crashes KABC Crashes
Train Test Train Test
Attribute Use
Length 97% 87% 99% 93%
AADT 100% 88% 98% 91%
Shou_W_R 50% 28% 47% 60%
Pave_Wid 29% 5% 20% 38%
Shou_W_L 39% 3% 19% 39%
Data Evaluation
Average Error 4.8 4.7 2.6 2.6
Relative Error 0.67 0.62 0.68 0.68
Correlation coefficient 0.63 0.67 0.65 0.58

It is worth to mention that the current study is limited to prediction only. One can use empirical Bayes (EB) method with
the SPFs from the Cubist framework. Table 6 lists the generated rules and linear SPFs developed by each rule for total crashes.
It is important to note that the sum of the number of cases in train data are not same as the total number of cases for train or
test data. Several rules can consider the same segment if it is in the criteria of the generated rules. These findings are in line
with the findings of most of the SPF literature. In most of the rules, segment length and AADT have positive signs. Shoulder
width (both right and left) usually contains a negative sign. However, for some rules, the signs of shoulder width are positive
which requires further investigation. A closer look at the rules show that presence of both shoulder widths (right and left
both) and larger threshold of shoulder widths are associated with these positive signs. As this study is limited to ROR crashes
only, information on both shoulder widths are not directly associated with the ROR crash counts. Table 7 lists the generated
rules and linear SPFs developed by each rule for KABC crashes.

One important feature of Cubist is its ability to develop rules-based regression models. Model interpretability is another
important feature of Cubist. Fig. 4 shows how the model fits the training data for significant variables such as AADT and seg-
ment length. The dotted points indicate the total observed crashes by length and AADT values. The blue line denotes the fit-
ted values (from Cubist prediction models), and the red line denotes the number of committees. The trend of the blue line
suggests that the sub-group affects length in terms of the predicted values in the generated rules.
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Table 6
SPFs Developed from Rules Using Training Data Model (Total Crashes).
Rules Cases Mean (range) Esti. SPF by Rule
Error
Training Data
Rule 1: Length <= 0.878 1495 0.9 (0, 19) 0.9 Crash; = —0.7 + 2.12 Length + 0.00021AADT
Rule 2: 0.878 < Length <=2.154 801 43 (0, 51) 3.0 Crash; = —3.1 + 2.05 Length — 0.83Shou_W_R + 0.72Shou_W L
+0.00063AADT + 0.09Pave_Wid
Rule 3: Length > 2.154 and AADT <= 920 624 5.6 (0, 42) 3.6 Crash; = —6.9 + 0.00729 AADT — 1.91Shou W_L
+1.6Shou_W R + 0.88 Length + 0.21Pave_Wid
Rule 4: Length > 2.154 and 920 < AADT 441 14.7 (0, 85) 8.1 Crash; = —2 +0.00635 AADT + 1.93 Length — 0.68 Shou W _L
<=1934
Rule 5: Length > 6.498 and AADT <= 1934 227 15.0 (0, 85) 8.4 Crash; = —8.3 + 0.01916 AADT + 0.7 Length — 0.37 Shou'W_L
Rule 6: Length > 2.154 and AADT > 920 985 18.0(0,159) 10.0 Crash; = —9.7 + 0.00188 AADT + 1.71 Length — 0.47 Shou_W R

+0.55 Paveyq — 0.22 Shou W_L
Rule 7: Length > 6.498 and Shou_W_L <=5 48 25.3 (3, 85) 15.3 Crash; = —122.4 + 6.44 Pave Wid
and 920 < AADT <= 1440
Rule 8: Length > 6.498 and Shou_W_L <=5 21 30.1 (4, 61) 16.6 Crash; = —179.5 + 0.12117 AADT + 0.43 Pave Wid
and 1440 < AADT <= 1934
Rule 9: Length > 4.33 and Shou_W_L<=5and 115 31.0(2,116) 15.9 Crash; = 5+ 6.71 Length — 4.5Shou_W L + 0.00065 AADT
AADT > 1934
Rule 10: Length > 4.33 and 5 < Shou_ W_L<=7 28 37.6 (4, 159) 32.1 Crash; = —55.6 + 81.96 Shou_ W _L + 13.22 Length + 0.00028 AADT
and AADT > 1934

Table 7
SPFs Developed from Rules Using Training Data Model (KABC Crashes).

Rules from Train Data Cases Mean Esti. SPF by Rule
(range)  Error

Training Data

Rule 1: Length <= 1.662 2054 0.8 (0, 0.8 FI; = —0.5 + 1.42 Length + 0.00013 AADT
15)
Rule 2: Length > 1.662 and AADT <= 954 747 2.7 (0, 1.9 FI; = —2.7 4+ 0.00433 AADT + 0.41 Length — 0.08 Shou_W_R + 0.06 Pave_Wid
24)
Rule 3: Length > 1.662 and AADT > 954 1104 8.7 (0, 4.9 FI; = —0.2 + 1.64 Length + 0.00109 AADT — 0.44 Shou-W R
96)
Rule 4: Length > 4.32 and 954 < AADT <= 368 10.8 (0, 5.9 Fl; = 2 +0.00289 AADT — 1.28 Shouy, + 1.19 Length
4140 57)
Rule 5: 4.32 < Length <= 6.932 and 41 16.4 (3, 9.3 Fl; = —15.9 + 24.56 Paveyid + 5.51 Length + 0.0017 AADT — 1.18 Shou W _L
Pave_Wid > 23 and AADT > 4140 58)
Rule 6: Length > 4.32 and Pave_Wid <= 21 204 (3, 125 FI; =12.5+ 0.002 AADT
23 and AADT > 4140 53)
Rule 7: Length > 6.932 and 21 21.7 (0, 135 FlI; = —12.5 + 67.02 Pavey;y + 0.00006 AADT + 0.03 Length — 0.02 Shou W _L
Pave_Wid > 23 and AADT > 4140 96)
150 - 1
- 7 = 150
24 n
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Fig. 4. Interpretation from the developed models based on training data (total crashes).
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6. Conclusions

Safety improvement on rural two-lane roadways is very important. Nearly 70 percent of the Louisiana’s state-maintained
roadways are rural two-lane roadways. A large proportion of ROR crashes happened on these roadways. Understanding asso-
ciation between the key factors and crash occurrences can allow LADOTD to implement suitable countermeasures to reduce
these crashes. This study applied statistical model (NB) and three machine learning models to determine the best-fit mod-
eling techniques. With Cubist showing higher prediction accuracies compared with the other two models, the research team
developed rules-based regression models for ROR total and KABC crashes on rural two-lane roadways.

This study shows that data-driven prediction algorithms such as Cubist are more robust compared to the statistical mod-
els for better prediction accuracies. Additionally, no hidden assumption is required for machine learning models. The current
study can be considered as a starting point in introducing the significance of rules-based regression models to the existing
SPFs. The SPFs and model interpretation visualizations developed from the models are beneficial for the safety practitioners
and policymakers for easy interpretation and decision making to improve safety on rural two-lane roadways.

The current study is not without limitations. First, the current study is limited to total and KABC crashes only. There is a
need for developing KA and KAB crashes, which is not done in this study. Another limitation is the usage of police reported
crash data and human errors in data compilation. Limitations of the current study offer directions for future research in this
domain.
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